Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach

نویسندگان

  • Abrar Inayat
  • Murni M. Ahmad
  • Mohamed Ibrahim Abdul Mutalib
چکیده

Due to energy and environmental issues, hydrogen has become a more attractive clean fuel. Furthermore, there is high interest in producing hydrogen from biomass with a view to sustainability. The thermochemical process for hydrogen production, i.e. gasification, is the focus of this work. This paper discusses the mathematical modeling of hydrogen production process via biomass steam gasification with calcium oxide as sorbent in a gasifier. A modelling framework consisting of kinetics models for char gasification, methanation, Boudouard, methane reforming, water gas shift and carbonation reactions to represent the gasification and CO2 adsorption in the gasifier, is developed and implemented in MATLAB. The scope of the work includes an investigation of the influence of the temperature, steam/biomass ratio and sorbent/biomass ratio on the amount of hydrogen produced, product gas compositions and carbon conversion. The importance of different reactions involved in the process is also discussed. It is observed that hydrogen production and carbon conversion increase with increasing temperature and steam/biomass ratio. The model predicts a maximum hydrogen mole fraction in the product gas of 0.81 occurring at 950 K, steam/biomass ratio of 3.0 and sorbent/biomass ratio of 1.0. In addition, at sorbent/biomass ratio of 1.52, purity of H2 can be increased to 0.98 mole fraction with all CO2 present in the system adsorbed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous high hydrogen content-synthesis gas production and in-situ CO2 removal via sorption-enhanced reaction process: modeling, sensitivity analysis and multi-objective optimization using NSGA-II algorithm

The main focus of this study is improvement of the steam-methane reforming (SMR) process by in-situ CO2 removal to produce high hydrogen content synthesis gas. Sorption-enhanced (SE) concept is applied to improve process performance. In the proposed structure, the solid phase CO2 adsorbents and pre-reformed gas stream are introduced to a gas-flowing solids-fixed bed reactor (GFSFBR). One dimens...

متن کامل

Application of Combined Catalyst/Sorbent on Hydrogen Generation from Biomass Gasification

Air-blown gasification of biomass in fluidized bed reactors produces relatively low concentrations of hydrogen. The combination of a catalyst and calcium-based sorbent is being developed to increase the efficiency of converting producer gas from biomass gasification into hydrogen. The conversion process entails reforming the methane and tar, and converting carbon monoxide into hydrogen by the w...

متن کامل

Hydrogen-Rich Gas Production by Sorption Enhanced Steam Reforming of Woodgas Containing TAR over a Commercial Ni Catalyst and Calcined Dolomite as CO2 Sorbent

The aim of this work was the evaluation of the catalytic steam reforming of a gaseous fuel obtained by steam biomass gasification to convert topping atmosphere residue (TAR) and CH4 and to produce pure H2 by means of a CO2 sorbent. This experimental work deals with the demonstration of the practical feasibility of such concepts, using a real woodgas obtained from fluidized bed steam gasificatio...

متن کامل

Effect of Steam During Fischer–Tropsch Synthesis Using Biomass-Derived Syngas

The gasification of biomass is a promising technique to generate different forms of valuable alternative energy, including direct thermal energy and further conversion of synthesis gas to clean liquid fuels or chemicals via Fischer– Tropsch synthesis (FTS) [1–5]. The ideal H2/CO ratio for FTS is ~2/1 based on the stoichiometry. However, The H2/ CO for the synthesis gas obtained from biomass gas...

متن کامل

A Theoretical Study of Two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

*Correspondence: J. N. Chung, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA e-mail: [email protected] Two concept systems that are based on the thermochemical process of high temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced.The primary objectives of the concept systems are (1) to develop the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010